Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dent Mater ; 33(5): e239-e254, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28245928

RESUMO

OBJECTIVE: The purpose of this study was to incorporate EgMA, an antibacterial monomer into two commercial dental adhesive systems for their application in endodontic restoration with the aim to disinfect the root canal space before curing and to inhibit bacterial growth on their surfaces after being cured. METHODS: EgMA monomer was added at 20%wt. into the formulation of the single-component self-etch, Clearfil Universal Bond™ (CUB) and into the catalyst and the adhesive components of the total-etch Adper Scotchbond-multipurpose™ (SBMP) adhesive systems. The degree of conversion (DC) was calculated from FTIR spectra, glass transition temperature (Tg) determined by DSC, water sorption and solubility were measured gravimetrically, and surface free energy (SFE) via contact angle measurements. The bonding performance to coronal and middle root canal dentin was assessed through push-out bond strength after filling the canals with a composite core material and the surface integrity was observed using SEM and confocal laser scanning microscopy (CLSM). The standard agar diffusion test (ADT) was used to identify the sensitivity of three endodontically pathogenic bacteria, Enterococcus faecalis, Streptococcus mutans and Propionibacterium acnes to uncured EgMA modified adhesives. Multispecies biofilm model from these strains was grown on the disc surface of cured adhesives and investigated using quantitative microbial culture and CLSM with live/dead staining. MTT assay was also used to determine the cytotoxicity of these adhesives. RESULTS: The incorporation of EgMA lowered polymerization exotherm and enhanced the hydrophobic character of these adhesives, without changing the DC and Tg in comparison to the controls (without EgMA). The total push-out bond strengths of the EgMA-containing adhesives were not significantly different from those of the controls (p>0.05). The modification of self-etch adhesive system enhanced the bond strength in the middle region of the roots canal. SEM of debonded specimens and CLSM examination showed the integrity of the resin-dentin interfaces. For all three bacteria tested, the sizes of the inhibition zones produced by uncured EgMA modified adhesives were significantly greater (p<0.05) than those of the controls. The results of biofilm inhibition tests showed less CFU for total bacteria on bonding agents with EgMA compared to the control materials (p<0.05). The modification at 20% monomer concentration had no adverse effects on cytocompatibility of both adhesives tested. SIGNIFICANCE: The inclusion of EgMA endows dental adhesives with effective antibacterial effects without influencing their curing properties, bonding ability to root canal dentin, and cytotoxicity against human gingival fibroblasts, indicating the usefulness of their application in endodontic restorations.


Assuntos
Antibacterianos/farmacologia , Cimentos Dentários , Adesivos Dentinários , Metacrilatos/farmacologia , Resinas Compostas , Colagem Dentária , Dentina , Humanos , Teste de Materiais , Cimentos de Resina
2.
Dent Mater ; 32(7): 929-39, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27130610

RESUMO

OBJECTIVES: Eugenol has been used in dentistry due to its ability to inhibit the growth of a range of microorganisms, including facultative anaerobes commonly isolated from infected root canals. The aim of this study was to evaluate the antibacterial activity of the experimental composites containing eugenyl methacrylate monomer (EgMA), a polymeric derivative of eugenol, against a range of oral bacteria, commonly associated with failure of coronal and endodontic restorations. In vitro composite behavior and wettability were also studied in conjunction with their antibacterial activity. METHODS: EgMA monomer (5 and 10% by weight) was added into BisGMA/TEGDMA resin based formulations with filler mixtures of hydroxyapatite (HA) and zirconium oxide ZrO2. The antibacterial activity of the experimental composites against Enterococcus faecalis, Streptococcus mutans and Propionibacterium acnes were evaluated by direct contact test and compared with composite formulation without inclusion of EgMA. To clarify the antibacterial mode of action, agar diffusion test (ADT) was also performed. Water sorption, solubility, diffusion coefficient, contact angle and surface free energy as complementary clinically relevant properties were determined. RESULTS: Water sorption and wettability studies showed reduction of water uptake and surface free energy values with increasing content of EgMA monomer, resulting in significant increase in the hydrophobicity of the composites. No inhibition zones were detected in any of the composites tested against the three bacteria employed as expected, due to the absence of any leachable antibacterial agent. The covalently anchored EgMA monomer with the composite surface exhibited an effective bacteriostatic activity by reducing the number of CFUs of the three species of bacteria tested with no significant dependence on the concentration of EgMA at 5 and 10% by weight. The surface antibacterial activity R of the experimental composites were different against the three tested species with values in the range 2.7-6.1 following the order E. faecalis

Assuntos
Antibacterianos , Resinas Compostas , Cimentação , Eugenol , Molhabilidade
3.
Dent Mater ; 32(2): 149-60, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26777114

RESUMO

OBJECTIVES: To formulate and evaluate new dual cured resin composite based on the inclusion of eugenyl methacrylate monomer (EgMA) with Bis-GMA/TEGDMA resin systems for intracanal post cementation and core build-up restoration of endodontically treated teeth. METHODS: EgMA was synthesized and incorporated at 5% (BTEg5) or 10% (BTEg10) into dual-cure formulations. Curing properties, viscosity, Tg, radiopacity, static and dynamic mechanical properties of the composites were determined and compared with Clearfil™DC Core-Plus, a commercial dual-cure, two-component composite. Statistical analysis of the data was performed with ANOVA and the Tukey's post-hoc test. RESULTS: The experimental composites were successfully prepared, which exhibited excellent curing depths of 4.9, 4.7 and 4.2 mm for BTEg0, BTEg5 and BTEg10 respectively, which were significantly higher than Clearfil™DC. However, the inclusion of EgMA initially led to a lower degree of cure, which increased when measured at 24 h with values comparable to formulations without EgMA, indicating post-curing. The inclusion of EgMA also lowered the polymerization exotherm thereby reducing the potential of thermal damage to host tissue. Both thermal and viscoelastic analyses confirmed the ability of the monomer to reduce the stiffness of the composites by forming a branched network. The compressive strength of BTEg5 was significantly higher than the control whilst flexural strength increased significantly from 95.9 to 114.8 MPa (BTEg5) and 121.9 MPa (BTEg10). Radiopacity of the composites was equivalent to ∼3 mm Al allowing efficient diagnosis. SIGNIFICANCE: The incorporation of EgMA within polymerizable formulations provides a novel approach to prepare reinforced resin composite material for intracanal post cementation and core build-up and the potential to impart antibacterial properties of eugenol to endodontic restorations.


Assuntos
Resinas Compostas/química , Metacrilatos/síntese química , Técnica para Retentor Intrarradicular , Cimentos de Resina/química , Bis-Fenol A-Glicidil Metacrilato/química , Análise do Estresse Dentário , Durapatita/química , Dureza , Teste de Materiais , Microscopia Eletrônica de Varredura , Polietilenoglicóis/química , Polimerização , Ácidos Polimetacrílicos/química , Viscosidade , Zircônio/química
4.
J Dent ; 43(11): 1308-15, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26362214

RESUMO

OBJECTIVES: To tailor composites of polyethylene-hydroxyapatite to function as a new intracanal post for the restoration of endodontically treated teeth (ETT). METHODS: Silanated hydroxyapatite (HA) and zirconium dioxide (ZrO2) filled low-density polyethylene (LDPE) composites were fabricated by a melt extrusion process and characterised using infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). The flexural strength and modulus were determined in dry state and post ageing in simulated body fluid and fractured surfaces analysed by SEM. The water uptake and radiographic appearance of the experimental composites were also measured and compared with a commercially known endodontic fibre post. Data were submitted to one-way analysis of variance (ANOVA) and post hoc Tukey multiple comparison tests at a level of significance P<0.05. RESULTS: The LDPE/HA composites were structurally flexible and the HA content had a significant effect on the flexural strength and modulus. A univariate analysis of variance showed no significant differences in modulus and strength (P<0.05) post accelerated ageing in simulated body fluid with very low water uptake. The melting point of the LDPE/HA composites ranged between 135 and 136°C, which would facilitate removal in case of retreatment using conventional dental heating devices. The inclusion of HA reduced the damping thereby enhancing dimensional stability, whilst the addition of zirconia yielded a semi-translucent material that was sufficiently radiopaque, comparable to commercial posts, thus yielding aesthetic materials. CONCLUSIONS: Innovative materials for restoration of ETT were developed; offering considerable benefits over the currently available material in terms of biomechanical and thermal properties. CLINICAL SIGNIFICANCE: This study provided a new option for the development of a new intracanal post made up of functional and aesthetic composites.


Assuntos
Resinas Compostas/química , Teste de Materiais , Dente não Vital/cirurgia , Durapatita/química , Humanos , Fenômenos Mecânicos , Modelos Biológicos , Polietileno/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...